Dimensionless Fast Fourier Transforms

نویسندگان

  • L. Auslander
  • J. R. Johnson
  • R. W. Johnson
چکیده

This paper shows that there are fast Fourier transform (FFT) algorithms that work, for a fixed number of points, independent of the dimension. Changing the dimension is achieved by relabeling the input and the output and changing the “twiddle factors.” An important consequence of this result, is that a program designed to compute the 1-dimensional Fourier transform can be easily modified to compute the 2-dimensional and 3-dimensional Fourier transform on the same number of points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recursive implementation of the dimensionless FFT

A divide and conquer algorithm is presented for computing arbitrary multi-dimensional discrete Fourier transforms. In contrast to standard approaches such as the row-column algorithm, this algorithm allows an arbitrary decomposition, based solely on the size of the transform independent of the dimension of the transform. Only minor modifications are required to compute transforms with different...

متن کامل

Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)

This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds.     The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...

متن کامل

Fast Fourier Transforms for Finite Inverse Semigroups

We extend the theory of fast Fourier transforms on finite groups to finite inverse semigroups. We use a general method for constructing the irreducible representations of a finite inverse semigroup to reduce the problem of computing its Fourier transform to the problems of computing Fourier transforms on its maximal subgroups and a fast zeta transform on its poset structure. We then exhibit exp...

متن کامل

A Method for Validating Multidimensional Fast Fourier Transform (FFT) Algorithms,

A method is described for validating fast Fourier transforms (FFTs) based on the use of simple input fiinctions whose discrete Fourier transforms can be evaluated in closed form. Explicit analytical results are developed for one-dimensional and two-dimensional discrete Fourier transforms. The analytical results are easily generalized to higher dimensions. The results offer a means for validatin...

متن کامل

Algorithms for Unequally Spaced Fast Laplace Transforms

Vol. 1 (2013) pp. 37-46. ALGORITHMS FOR UNEQUALLY SPACED FAST LAPLACE TRANSFORMS FREDRIK ANDERSSON⇤ Abstract. We develop fast algorithms for unequally spaced discrete Laplace transforms with complex parameters, which are approximate up to prescribed choice of computational precision. The algorithms are based on modifications of algorithms for unequally spaced fast Fourier transforms using Gauss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997